La conexión entre hipotálamo y páncreas
Se sabe que las neuronas POMC detectan cambios en la disponibilidad de nutrientes pero se desconocen en detalle los mecanismos moleculares implicados. También se sabe que los cambios en la forma de las mitocondrias, fenómeno conocido como dinámica mitocondrial, constituye un mecanismo de adaptación energética en condiciones metabólicas cambiantes, para ajustar las necesidades de las células.
Para descubrir si defectos en la dinámica mitocondrial de este pequeño núcleo de neuronas podían causar alteraciones del metabolismo, los investigadores eliminaron una proteína de dinámica mitocondrial, la mitofusina 1, de las neuronas POMC de ratones.
En primer lugar, los científicos observan que estos ratones tienen alterada la detección de los niveles de glucosa y la adaptación entre el estado de ayunas y después de ser alimentados. Y en segundo lugar, ven que estos defectos conducen a perturbaciones en el metabolismo de la glucosa que vienen causadas por una menor secreción de insulina. "Fue sorprendente descubrir que estas neuronas no sólo están implicadas en el control de la ingesta, que ya se sabía, sino que también están implicadas en el control de la cantidad de insulina que segregan las células beta del páncreas", explica Zorzano jefe del Laboratorio Enfermedades Metabólicas Complejos y Mitocondrias del IRB Barcelona.
Los científicos observan por primera vez que esta comunicación entre hipotálamo y páncreas depende de la actividad de la proteína mitofusina 1 y empiezan a entender algunos detalles moleculares de esta conexión. Describen que las alteraciones se deben a un aumento desproporcionado, aunque transitorio, de la producción de especies radicales de oxígeno (ROS) en el hipotálamo. Cuando en el laboratorio restauran los niveles de ROS en el hipotálamo, el páncreas vuelve a secretar niveles correctos de insulina.
Obesidad y diabetes
Marc Claret, jefe del Grupo de Control Neuronal del Metabolismo en el IDIBAPS, añade que "nuestros resultados también sugieren implicaciones patológicas de este modelo animal, dado que una dieta rica en grasas hace que estos ratones sean más susceptibles a desarrollar diabetes".
La segregación de insulina es un fenómeno capital en relación a la diabetes. Los pacientes de diabetes de tipo 2, que sufren el 85% de personas diabéticas, tienen menos células beta y menor capacidad de segregar insulina en respuesta a glucosa. "Entender los mecanismos implicados en la regulación de la insulina es importante y, por tanto, nos ayuda a entender mejor la fisiopatología de la diabetes", describe Claret, que a la vez recalca que "hay que hacer todavía mucha investigación para poder aplicar los hallazgos, dado que estamos hablando de mecanismos neuronales de compleja intervención".
Este trabajo ha contado con financiación del Ministerio de Economía y Competitividad y de fondos europeos FEDER. El estudio se ha llevado a cabo con investigadores de la Universidad de Medicina de Yale (EE.UU.), la Universidad de Medicina de Ginebra (Suiza), la Universidad de Barcelona, la Universidad Paul Sabatier de Toulouse (Francia), el Hospital Universitario Virgen del Rocío de Sevilla, la Universidad de Santiago de Compostela, el Instituto de Investigación Biomédica de Bellvitge (IDIBELL), la Universidad de Medicina Veterinaria (Hungría) y del Hospital Clínico de Barcelona.
Artículo de referencia:
Article de referència:
Sara Ramírez, Alicia G Gómez-Valadés, Marc Schneeberger, Luis Varela, Roberta Haddad-Tóvolli, Jordi Altirriba, Eduard Noguera, Anne Drougard, Álvaro Flores-Martínez, Mónica Imbernón, Iñigo Chivite, Macarena Pozo, Andrés Vidal-Itriago, Ainhoa Garcia, Sara Cervantes, Rosa Gasa, Ruben Nogueiras, Pau Gama-Pérez, Pablo M Garcia-Roves, David A Cano, Claude Knauf, Joan-Marc Servitja, Tamas L Horvath, Ramon Gomis, Antonio Zorzano and Marc Claret.
Cell Metabolism (2017). doi: 10.1016/j.cmet.2017.05.010