L’activitat cerebral es regeix per un equilibri minuciós entre excitació i inhibició neuronal. Així, l’activació neuronal es produeix per mecanismes d’excitació regulats minuciosament a través de processos inhibitoris. Per a certes funcions, la xarxa neuronal necessita estar sincronitzada i això produeix oscil·lacions d’alta freqüència que permeten un bon processament de la informació i l’execució de comportaments. Aquesta sincronització depèn de l’equilibri entre l’excitació i la inhibició que s’ha vist afectat en un gran número de trastorns que cursen amb disfunció cognitiva.
“En el passat ja havíem detectat canvis en l‘arquitectura cel·lular de les neurones de l’escorça cerebral en models animals de síndrome de Down. Vam observar que l’estructura de les neurones era diferent. Ara hem fet un pas endavant i hem estudiat la fisiologia, és a dir, la funció d’aquesta escorça cerebral i hem pogut comprovar que aquestes alteracions cel·lulars i petits canvis en la connectivitat inhibitòria es tradueixen en un dèficit de l’activació d’aquesta regió i en el seu ritme i sincronització de l’activitat neuronal,” explica la Dra. Mara Dierssen, cap del grup de Neurobiologia Cel·lular i de Sistemes i co-investigadora principal d’aquest estudi. “Un dels grans problemes de la discapacitat intel·lectual és que no comprenem com les alteracions que detectem a nivell cel·lular desemboquen en canvis a nivell dels circuits cerebrals i alteracions de la funció cognitiva. El treball que acabem de publicar explica algunes d’aquestes alteracions cel·lulars i ofereix per primera vegada un estudi in vivo de la fisiologia de l’escorça cerebral, estructura clau en les funcions executives com la concentració, l’aprenentatge o la resolució de problemes,” afegeix.
Les científiques s’han centrat en un dels gens relacionats amb la síndrome de Down. Mitjançant experiments amb models animals que sobreexpressen el gen candidat, les investigadores van demostrar que l’excés d’aquest gen provoca canvis molt subtils en l’equilibri excitació/inhibició i aquests porten a una reducció. És a dir, que quan aquest gen es troba sobreexpressat, redueix el nivell de descàrrega de les neurones i altera el ritme en les ones d’alta freqüència de l’escorça cerebral. És més, van observar que el problema rau en unes neurones que s’encarreguen de controlar la inhibició. En resum, si hi ha menys activitat i existeix un desequilibri en les freqüències de les ones cerebrals en síndrome de Down és degut a canvis en la connectivitat de les neurones que s’encarreguen de controlar-les.
L’estudi ha combinat experiments d’electrofisiologia i histologia amb un model computacional que emula el circuit neuronal de l’escorça cerebral de forma virtual. “Hem identificat alteracions anatòmiques i funcionals, i a través d’un model computacional hem demostrat com aquests dèficits poden explicar les observacions experimentals” comenta la Dra. Sánchez Vives, cap de l’equip Neurociència de Sistemes i co-investigadora principal de l’estudi. “Gràcies al model computacional hem pogut comprendre tot l’engranatge i fer prediccions sobre el funcionament de l’escorça cerebral en aquesta patologia i sobre l’avaluació de l’impacte en la funció cognitiva de les alteracions detectades” conclou la investigadora.
En aquest treball, els primers autors del qual són Marcel Ruiz-Mejias de l’IDIBAPS i María Martínez de Lagrán del CRG, també hi han participat investigadors de la Universitat Pompeu Fabra, Universidad Pablo de Olavide i de l’Institut Superior de Salut de Roma.
Peu de foto: L’activitat de la neurona inhibitòria (verd) està controlada pels contactes de tipus inhibidor (vermell) que rep. Aquest control s’ha vist afectat en l’escorça cerebral del model de ratolí de síndrome de Down.
Referència de l'article:
Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex. Ruiz-Mejias M, Martinez de Lagran M, Mattia M, Castano-Prat P, Perez-Mendez L, Ciria-Suarez L, Gener T, Sancristobal B, García-Ojalvo J, Gruart A, Delgado-García JM, Sanchez-Vives MV, Dierssen M. J Neurosci. 2016 Mar 30;36(13):3648-59. doi: 10.1523/JNEUROSCI.2517-15.2016.